Laird Technologies designs and manufactures customized, performance-critical products for wireless and other advanced electronics applications. The company is a global market leader in the design and supply of electromagnetic interference (EMI) shielding, thermal management products, mechanical actuation systems, signal integrity components, and wireless antennae solutions, as well as radio frequency (RF) modules and systems.

Laird Technologies is the world leader in the design and manufacture of customized, performance-critical products for wireless and other advanced electronics applications. Laird Technologies partners with its customers to customize product solutions for applications in many industries including:

- Network Equipment
- Handsets
- Telecommunications
- Data Transfer & Information Technology
- Computers
- Automotive Electronics
- Aerospace
- Defense
- Medical Equipment
- Consumer Electronics
- Industrial

Laird Technologies offers its customers unique product solutions, dedication to research and development, as well as a seamless network of manufacturing and customer support facilities across the globe.
TABLE OF CONTENTS

QUALITY ASSURANCE ... 4
Quality Philosophy ... 4
Quality Testing ... 4
Quality Measurement System ... 4

PART IDENTIFICATION ... 5
Part Numbers ... 5

STANDARD COMPONENTS .. 6
Toroidal Core Coatings ... 6

LAIRD TECHNOLOGIES FERRITE CORE MATERIALS 7
Common Mode Materials ... 7
Comparing Common Mode Materials 8
Low Frequency Material 35 .. 9
Mid Frequency Material 28 .. 10
High Frequency Material 25 .. 11
Broad Frequency Material 38 .. 12
DC Bias Materials .. 13
Comparing DC Bias Materials ... 14
DC Bias Standard Temperature (0 to 70 C) Material 36 15
DC Bias Extended Temperature (-40 to 85 C) Material 46 16
Low DC Bias - High Permeability Material 56 17
High DC Bias Extended Temperature (-40 to 85 C) Material 66 ... 18
Material 36/46 Minimum Inductance with Various Turns (8 mA DC Bias) ... 19
Material 66 Minimum Inductance with Various Turns (16mA to 32mA DC Bias) .. 20
High Permeability Materials for Telecom 25
Comparing Telecom Materials ... 26
Telecom Broad Temperature Material 42 27
Telecom High Permeability Material 40 28
Comparing Other Materials ... 29
Material 35 ... 30
Material 39 .. 31

MATERIAL COMPARISON CHART .. 32

CATALOG TOROID PARTS .. 33

MEDIUM & LARGE CATALOG TOROID PARTS 37

BALUN CORE CATALOG PARTS ... 38

FERRITE PROPERTY MEASUREMENT .. 39
Initial Permeability, Losses & Inductance Factor 39
Changes in Inductance versus Temperature & Curie Temperature ... 39
Flux Density, Residual Flux Density, Coercive Force & Amplitude Permeability 40
Pulse Characteristics .. 41
Power Loss ... 41
Measurement of Impedance Of Ferrite Components 42

TERMINOLOGY .. 43

NOTICE
Laird Technologies’ products or subcomponents are not specifically designed or tested by Laird Technologies for use in any medical applications, surgical applications, medical device manufacturing, or any similar procedure or process requiring approval, testing, or certification by the United States food and drug administration or other similar Governmental entity. Applications with unusual environmental requirements such as military, medical, life-support or Life-sustaining equipment are specifically not recommended without additional testing for such application.

www.lairdtech.com
QUALITY ASSURANCE

QUALITY PHILOSOPHY
Customer focus is paramount in our quality program. Our quality philosophy is outlined as follows:

Laird Technologies is a company committed to continuous improvement. We fulfill this commitment by continually improving the quality of the products and services we provide our customers, both external and internal.

We recognize that our customers define quality. We further recognize that continuous improvement can only result from the fullest development of our people and technologies.

We believe that to pursue this course, we must set unselfish service as our standard for conduct. Building on the values of our history, we will raise our standards of performance through continuous improvement and imagination. In addition, our actions must demonstrate integrity, honesty, excellence and self-discipline.

We believe in teamwork. Our commitment to continuous improvement is fulfilled and maintained by the combined, cohesive efforts of people with a common goal.

QUALITY MEASUREMENT SYSTEM
Laird Technologies’ Quality Management Systems have been certified to the ISO 9001:2000 requirements by Ceramic Industry Certification Scheme Ltd.

QUALITY TESTING
We test on the following equipment:

Inductance, Loss Factor: Hewlett-Packard 4274A Multi-Frequency LCR Meter
Hewlett-Packard 4275A Multi-Frequency LCR Meter
Hewlett-Packard 4284A Multi-Frequency LCR Meter

Impedance: Hewlett-Packard 4396B Network/Spectrum Analyzer
Hewlett-Packard 4991A Network/Spectrum Analyzer
PART IDENTIFICATION

PART NUMBERS
Part numbers use a ten character alphanumeric nomenclature providing:
• The material designation
• The product type (shape)
• A basic size description
• A parts modifier series

PART NUMBERING SYSTEM EXAMPLE

<table>
<thead>
<tr>
<th>35</th>
<th>T</th>
<th>0100</th>
<th>-</th>
<th>0</th>
<th>0</th>
<th>P</th>
</tr>
</thead>
</table>

MATERIAL DESIGNATOR
35 ________ - ________
A two digit material designator is assigned to materials on the basis of initial permeability.

<table>
<thead>
<tr>
<th>Typical Application</th>
<th>Material</th>
<th>Initial Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Mode Filtering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>DC Bias Ethernet Transformers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>High Perm for Telecom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>7500</td>
<td></td>
</tr>
<tr>
<td>40*</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

* 40 material large toroids are mostly used for very low frequency power supply filtering

<table>
<thead>
<tr>
<th>Other Applications</th>
<th>Material</th>
<th>Initial Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>7000</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT TYPES
35 T ________
Transformer and Filter Core Division uses two basic shape designators:
T for toroidal cores
Example: 35T0100-00P
N for balun cores
Example: 35N0136-00P

BASIC SIZE DESCRIPTION
35 T 0100 - ________
The four digits following the product description provide the largest dimension of the part in thousandths of an inch. For toroids and similar shapes, it usually describes the outside or major diameter of the core.

For other types of parts, it is the largest dimension specified in the part’s description.

PARTS MODIFIER SERIES
35 T 0100 - 00P
The first of the three digits following the dash refers to the part thickness. A zero through nine digit refers variations in thickness from the same tool. The second modifying digit relates to a custom requirement (electrical testing or physical specification). The third digit or letter describes a coating or finish.

COATING DESIGNATIONS
P — Parylene
Hi-Pot Rating 1000 VAC minimum
Nominal Thickness: 0.0005” / 0.0127 mm

H — Epoxy
Hi-Pot Rating 1000 VAC minimum
Nominal Thickness: 0.003” / 0.0762 mm

* 40 material large toroids are mostly used for very low frequency power supply filtering
STANDARD COMPONENTS

<table>
<thead>
<tr>
<th>Soft Ferrite Typical Physical Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Heat</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
</tr>
<tr>
<td>Coefficient of Linear Expansion</td>
</tr>
<tr>
<td>Tensile Strength</td>
</tr>
<tr>
<td>Compressive Strength</td>
</tr>
<tr>
<td>Youngs Modulus</td>
</tr>
<tr>
<td>Hardness (Knoop)</td>
</tr>
<tr>
<td>Density</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD-ID Tolerances</td>
</tr>
<tr>
<td>mm (inches)</td>
</tr>
<tr>
<td>OD - ID</td>
</tr>
<tr>
<td>< 5.05 (.199)</td>
</tr>
<tr>
<td>5.08 (.200) - 9.50 (.374)</td>
</tr>
<tr>
<td>9.53 (.375) - 15.85 (.624)</td>
</tr>
<tr>
<td>15.88 (.625) - 25.37 (.999)</td>
</tr>
<tr>
<td>> 25.40 (1.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HT Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
</tr>
<tr>
<td>< 6.32 (.249)</td>
</tr>
<tr>
<td>6.35 (.250) - 7.34 (.289)</td>
</tr>
<tr>
<td>> 7.37 (.290)</td>
</tr>
</tbody>
</table>

TOROIDAL CORE COATINGS

If required by customer applications, smooth, resistive coatings may be provided. Standard dimensions for each toroid are listed in the parts chart, and coating will alter these. Inductance values are as shown for standard sizes and cores are checked after coating to ensure compliance.

PARYLENE

Parylene is ideally suited for core sizes with outside diameters less than 9.5 mm (0.375”). Parylene is a highly conformal coating with uniform thickness even around corners and edges. It is applied by vapor deposition, which prevents clogging of small openings. The addition of Parylene results in very little increase in core size. It has a high resistivity and a low coefficient of friction (close to that of Teflon), which results in low wire insulation abrasion during winding. Parylene’s relatively low dielectric constant is 2.95, resulting in only a small increase of winding-to-core capacitance. After coating, cores are Hi-Pot tested to 1000 VAC volts for single thickness. Higher voltages available upon request via additional coating thicknesses.

EPOXY

Epoxy coating is the choice for cores about 9.5mm (0.375”) diameter or larger. It is applied by spraying. Because of its thickness, epoxy coating provides some cushioning during winding. Epoxy coating provides inherent toughness, corrosion resistance, and very good adhesion. These properties are retained even after long term heat aging. After coating, cores are Hi-Pot tested to 1000 VAC.
COMMON MODE MATERIALS - 35, 28, 25, 38

TYPICAL VALUES

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>UNIT</th>
<th>35 Low Frequency</th>
<th>28 Mid Frequency</th>
<th>25 High Frequency</th>
<th>38 Broad Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Initial Permeability</td>
<td>μ_i</td>
<td></td>
<td>5000</td>
<td>850</td>
<td>125</td>
<td>1700</td>
</tr>
<tr>
<td>A_1 Tolerance</td>
<td></td>
<td>%</td>
<td>± 20</td>
<td>± 20</td>
<td>± 30</td>
<td>± 30</td>
</tr>
<tr>
<td>Saturation Flux Density</td>
<td>B_s</td>
<td>Gauss</td>
<td>4500</td>
<td>3250</td>
<td>3600</td>
<td>3000</td>
</tr>
<tr>
<td>at Field Intensity</td>
<td>H</td>
<td>Oersteds</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Residual Flux Density</td>
<td>B_r</td>
<td>Gauss</td>
<td>1000</td>
<td>2000</td>
<td>2600</td>
<td>1500</td>
</tr>
<tr>
<td>Coercive Force</td>
<td>H_c</td>
<td>Oersteds</td>
<td>0.10</td>
<td>0.40</td>
<td>1.60</td>
<td>0.20</td>
</tr>
<tr>
<td>Relative Loss Factor at Frequency</td>
<td>$\tan\delta \mu_i f$</td>
<td>10^{-6} MHz</td>
<td>20</td>
<td>91</td>
<td>740</td>
<td>53</td>
</tr>
<tr>
<td>Curie Temperature</td>
<td>T_C</td>
<td>°C</td>
<td>> 150</td>
<td>> 175</td>
<td>> 225</td>
<td>> 120</td>
</tr>
<tr>
<td>Resistivity</td>
<td>ρ</td>
<td>Ω-cm</td>
<td>100</td>
<td>10^3</td>
<td>10^6</td>
<td>10^3</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td>g/cm³</td>
<td>4.8</td>
<td>4.9</td>
<td>4.9</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Impedance with 10 Turns

Nominal Values

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Low Frequency 35 Material @ 10 MHz</th>
<th>Mid Frequency 28 Material @ 150 MHz</th>
<th>High Frequency 25 Material @ 300 MHz</th>
<th>Broad Frequency 38 Material @ 100 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0100-00</td>
<td>1001</td>
<td>1567</td>
<td>714</td>
<td>966</td>
</tr>
<tr>
<td>T0100-20</td>
<td>601</td>
<td>939</td>
<td>434</td>
<td>656</td>
</tr>
<tr>
<td>T0119-00</td>
<td>1189</td>
<td>1606</td>
<td>892</td>
<td>1689</td>
</tr>
<tr>
<td>T0120-00</td>
<td>878</td>
<td>1268</td>
<td>663</td>
<td>1248</td>
</tr>
<tr>
<td>T0135-00</td>
<td>1021</td>
<td>1288</td>
<td>748</td>
<td>1058</td>
</tr>
<tr>
<td>T0135-60</td>
<td>1214</td>
<td>1541</td>
<td>895</td>
<td>1269</td>
</tr>
<tr>
<td>T0155-10</td>
<td>839</td>
<td>1053</td>
<td>644</td>
<td>911</td>
</tr>
<tr>
<td>T0231-00</td>
<td>1109</td>
<td>1409</td>
<td>874</td>
<td>1257</td>
</tr>
</tbody>
</table>

EFFECT OF TOURNS ON IMPEDANCE

Ideally, impedance would be proportional to frequency and the square of the number of turns regardless of the magnitude of either. This is generally the case at very low frequencies, but becomes less valid as frequency increases. The predominant cause of such behavior is interwinding capacitance. Capacitance is directly proportional to the area of the conductor and inversely proportional to the distance between the conductors. As the number of turns increases, the area of the conductor (the length of the wire) increases and the distance between the conductors (the spacing between turns) decreases. The end result is an LC resonance above which capacitive reactance decreases impedance. The number of turns, their spacing, and the uniformity of their spacing are major factors in the frequency response of wound toroidal filters and must therefore be carefully considered in their assembly.
COMPARING MATERIALS

PERFORMANCE OF DIFFERING PERMEABILITY COMMON MODE MATERIALS

Impedance cores are used to suppress unintended signals on or being emitted from cables or wires. If these signals are not accounted for, they can interfere with electronics and/or cause a failure to meet government emissions standards or susceptibility regulations. The cores suppress unintended signals by acting on the magnetic fields that surround the cable or wire.

When a signal travels through a conductor, a magnetic field is generated around that conductor. A ferrite core, if placed around the conductor, can interact with this magnetic field. The magnetic field activates the ferrite, which, in response to the magnetic field, imposes impedance that reduces the magnitude of the unintended signal.

The impedance (Z) that weakens the unintended signal, consists of two components. The first is a reactive component (X). It represents the amount of inductance that exists in the core as a function of frequency. In other words, $X = 2\pi \times \text{frequency} \times \text{inductance (L)}$. The second is a resistive component (R). It results from the core’s natural tendency to resist an electrical signal, in this case a magnetic field. The resulting impedance is the square root of the sum of the squares of the resistance and reactance, or $\sqrt{Z^2 = (R^2 + X^2)}$, which is measured in ohms.

Laird Technologies low frequency cores have high permeability, resulting in suppression of low frequency signals. As demonstrated in the following chart, the impedance at very low frequencies is principally contributed by the X. At higher frequencies the R predominates.
MATERIAL 35
COMMON MODE LOW FREQUENCY

5000 PERMEABILITY

Initial Permeability vs. Temperature

Permeability & Loss Factor vs. Frequency

Comparing Turns - 35T0155-10P

Saturation Flux Density vs. Temperature
MATERIAL 28
COMMON MODE MID FREQUENCY

850 PERMEABILITY

Initial Permeability vs. Temperature

Permeability vs. Frequency

Comparing Turns - 28T0155-10P

Saturation Flux Density vs. Temperature
MATERIAL 25
COMMON MODE HIGH FREQUENCY

125 PERMEABILITY

Initial Permeability vs. Temperature

Permeability vs. Frequency

Comparing Turns - 25T0155-10P

Saturation Flux Density vs. Temperature
MATERIAL 38
COMMON MODE BROAD FREQUENCY

1,700 PERMEABILITY

Initial Permeability vs. Temperature

Permeability & Loss Factor vs. Frequency

Comparing Turns - 38T0155-10P

Saturation Flux Density vs. Temperature
DC BIAS MATERIALS 36, 46, 56, 66

<table>
<thead>
<tr>
<th>TYPICAL VALUES</th>
<th>DC BIAS MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER</td>
<td>SYMBOL</td>
</tr>
<tr>
<td>Relative Initial Permeability</td>
<td>μ_i</td>
</tr>
<tr>
<td>A_i Tolerance</td>
<td>%</td>
</tr>
<tr>
<td>Saturation Flux Density B_s</td>
<td>Gauss</td>
</tr>
<tr>
<td>at Field Intensity H</td>
<td>Oersteds</td>
</tr>
<tr>
<td>Residual Flux Density B_r</td>
<td>Gauss</td>
</tr>
<tr>
<td>Coercive Force H_c</td>
<td>Oersteds</td>
</tr>
<tr>
<td>Relative Loss Factor at Frequency $\tan \delta</td>
<td>MHz</td>
</tr>
<tr>
<td>Curie Temperature T_c</td>
<td>°C</td>
</tr>
<tr>
<td>Resistivity ρ</td>
<td>$\Omega \cdot cm$</td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum A_i Values (mH/T²)</th>
<th>DC Bias Standard Temp Material 36</th>
<th>DC Bias Extended Temp Material 46</th>
<th>Low DC Bias High Perm Material 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_i Target</td>
<td>$A_i \cdot 0.35$ Oe Bias Min</td>
<td>A_i Target</td>
<td>$A_i \cdot 0.35$ Oe Bias Min</td>
</tr>
<tr>
<td>Part Numbers</td>
<td>25°C</td>
<td>25°C</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>T0100-40</td>
<td>1188</td>
<td>1063</td>
<td>884</td>
</tr>
<tr>
<td>T0115-00</td>
<td>703</td>
<td>629</td>
<td>523</td>
</tr>
<tr>
<td>T0115-10</td>
<td>955</td>
<td>853</td>
<td>710</td>
</tr>
<tr>
<td>T0119-40</td>
<td>1501</td>
<td>1342</td>
<td>1117</td>
</tr>
<tr>
<td>T0120-80</td>
<td>739</td>
<td>661</td>
<td>550</td>
</tr>
<tr>
<td>T0122-30</td>
<td>988</td>
<td>883</td>
<td>735</td>
</tr>
<tr>
<td>T0135-10</td>
<td>912</td>
<td>815</td>
<td>679</td>
</tr>
<tr>
<td>T0153-60</td>
<td>818</td>
<td>731</td>
<td>608</td>
</tr>
</tbody>
</table>
COMPARING MATERIALS

25°C Minimum Permeability

0°C to 70°C Minimum Permeability

-40°C to 85°C Minimum Permeability
MATERIAL 36
DC BIAS STANDARD TEMPERATURE
(0°C TO 70°C)

4,500 PERMEABILITY

Initial Permeability vs. Temperature

Amplitude Permeability vs. Flux Density

Incremental Permeability vs. Field Intensity

Permeability & Loss Factor vs. Frequency
MATERIAL 46
DC BIAS EXTENDED TEMPERATURE
(-40°C TO 85°C)

4,000 PERMEABILITY

Initial Permeability vs. Temperature

Amplitude Permeability vs. Flux Density

Incremental Permeability vs. Field Intensity

Permeability & Loss Factor vs. Frequency
MATERIAL 56
LOW DC BIAS - HIGH PERMEABILITY

5,500 PERMEABILITY

Initial Permeability vs. Temperature

Amplitude Permeability vs. Flux Density

Incremental Permeability vs. Field Intensity

Permeability & Loss Factor vs. Frequency

www.lairdtech.com
MATERIAL 66
HIGH DC BIAS EXTENDED TEMPERATURE PoE/PoE+ APPLICATION (-40°C TO 85°C)

3,200 PERMEABILITY

Initial Permeability vs. Temperature

Permeability vs Frequency

Incremental Permeability vs. Field Intensity
Materials 36/46

Minimum Inductance with Various Turns (8 mA DC Bias)

<table>
<thead>
<tr>
<th>Part</th>
<th>16 Turns</th>
<th></th>
<th></th>
<th>18 Turns</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H (Oe)</td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-2</td>
<td>0.29</td>
<td>89</td>
<td>73</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100-4</td>
<td>0.29</td>
<td>295</td>
<td>245</td>
<td>291</td>
<td>204</td>
<td>-</td>
</tr>
<tr>
<td>115-0</td>
<td>0.24</td>
<td>183</td>
<td>151</td>
<td>177</td>
<td>125</td>
<td>-</td>
</tr>
<tr>
<td>115-1</td>
<td>0.24</td>
<td>249</td>
<td>206</td>
<td>240</td>
<td>170</td>
<td>-</td>
</tr>
<tr>
<td>119-4</td>
<td>0.27</td>
<td>381</td>
<td>316</td>
<td>372</td>
<td>262</td>
<td>-</td>
</tr>
<tr>
<td>120-8</td>
<td>0.22</td>
<td>195</td>
<td>161</td>
<td>187</td>
<td>133</td>
<td>-</td>
</tr>
<tr>
<td>121-2</td>
<td>0.24</td>
<td>-</td>
<td>-</td>
<td>214</td>
<td>152</td>
<td>-</td>
</tr>
<tr>
<td>122-3</td>
<td>0.23</td>
<td>259</td>
<td>214</td>
<td>249</td>
<td>177</td>
<td>-</td>
</tr>
<tr>
<td>135-0</td>
<td>0.21</td>
<td>150</td>
<td>124</td>
<td>143</td>
<td>102</td>
<td>-</td>
</tr>
<tr>
<td>135-1</td>
<td>0.21</td>
<td>243</td>
<td>201</td>
<td>232</td>
<td>166</td>
<td>-</td>
</tr>
<tr>
<td>135-2</td>
<td>0.21</td>
<td>102</td>
<td>84</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135-4</td>
<td>0.21</td>
<td>210</td>
<td>173</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135-6</td>
<td>0.21</td>
<td>180</td>
<td>149</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>137-0</td>
<td>0.23</td>
<td>109</td>
<td>90</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>145-0</td>
<td>0.21</td>
<td>-</td>
<td>-</td>
<td>350</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>153-0</td>
<td>0.20</td>
<td>183</td>
<td>151</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>153-4</td>
<td>0.20</td>
<td>365</td>
<td>302</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>20 Turns</th>
<th></th>
<th></th>
<th>22 Turns</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H (Oe)</td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-2</td>
<td>0.30</td>
<td>125</td>
<td>108</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100-4</td>
<td>0.36</td>
<td>418</td>
<td>348</td>
<td>427</td>
<td>295</td>
<td>-</td>
</tr>
<tr>
<td>115-0</td>
<td>0.30</td>
<td>270</td>
<td>224</td>
<td>267</td>
<td>187</td>
<td>-</td>
</tr>
<tr>
<td>115-1</td>
<td>0.30</td>
<td>367</td>
<td>304</td>
<td>362</td>
<td>253</td>
<td>-</td>
</tr>
<tr>
<td>119-4</td>
<td>0.34</td>
<td>546</td>
<td>453</td>
<td>551</td>
<td>382</td>
<td>-</td>
</tr>
<tr>
<td>120-8</td>
<td>0.28</td>
<td>290</td>
<td>240</td>
<td>284</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>121-2</td>
<td>0.30</td>
<td>-</td>
<td>-</td>
<td>322</td>
<td>226</td>
<td>-</td>
</tr>
<tr>
<td>122-3</td>
<td>0.29</td>
<td>384</td>
<td>318</td>
<td>378</td>
<td>265</td>
<td>-</td>
</tr>
<tr>
<td>135-0</td>
<td>0.26</td>
<td>226</td>
<td>187</td>
<td>219</td>
<td>155</td>
<td>-</td>
</tr>
<tr>
<td>135-1</td>
<td>0.26</td>
<td>366</td>
<td>303</td>
<td>355</td>
<td>251</td>
<td>-</td>
</tr>
<tr>
<td>135-2</td>
<td>0.26</td>
<td>154</td>
<td>127</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135-4</td>
<td>0.26</td>
<td>316</td>
<td>262</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135-6</td>
<td>0.26</td>
<td>271</td>
<td>224</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>137-0</td>
<td>0.29</td>
<td>152</td>
<td>137</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>145-0</td>
<td>0.27</td>
<td>-</td>
<td>-</td>
<td>532</td>
<td>375</td>
<td>-</td>
</tr>
<tr>
<td>153-0</td>
<td>0.25</td>
<td>275</td>
<td>228</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>153-4</td>
<td>0.25</td>
<td>551</td>
<td>455</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>24 Turns</th>
<th></th>
<th></th>
<th>26 Turns</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H (Oe)</td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-2</td>
<td>0.44</td>
<td>147</td>
<td>122</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100-4</td>
<td>0.44</td>
<td>489</td>
<td>407</td>
<td>555</td>
<td>378</td>
<td>-</td>
</tr>
<tr>
<td>115-0</td>
<td>0.36</td>
<td>356</td>
<td>297</td>
<td>364</td>
<td>251</td>
<td>-</td>
</tr>
<tr>
<td>115-1</td>
<td>0.36</td>
<td>484</td>
<td>403</td>
<td>494</td>
<td>341</td>
<td>-</td>
</tr>
<tr>
<td>119-4</td>
<td>0.40</td>
<td>700</td>
<td>585</td>
<td>741</td>
<td>508</td>
<td>-</td>
</tr>
<tr>
<td>120-8</td>
<td>0.33</td>
<td>392</td>
<td>326</td>
<td>394</td>
<td>274</td>
<td>-</td>
</tr>
<tr>
<td>121-2</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>441</td>
<td>304</td>
<td>-</td>
</tr>
<tr>
<td>122-3</td>
<td>0.35</td>
<td>509</td>
<td>423</td>
<td>517</td>
<td>357</td>
<td>-</td>
</tr>
<tr>
<td>135-0</td>
<td>0.32</td>
<td>303</td>
<td>252</td>
<td>303</td>
<td>211</td>
<td>-</td>
</tr>
<tr>
<td>135-1</td>
<td>0.32</td>
<td>491</td>
<td>407</td>
<td>490</td>
<td>342</td>
<td>-</td>
</tr>
<tr>
<td>135-2</td>
<td>0.32</td>
<td>206</td>
<td>171</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135-4</td>
<td>0.32</td>
<td>424</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135-6</td>
<td>0.32</td>
<td>364</td>
<td>302</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>137-0</td>
<td>0.35</td>
<td>215</td>
<td>179</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>145-0</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>740</td>
<td>515</td>
<td>-</td>
</tr>
<tr>
<td>153-0</td>
<td>0.30</td>
<td>377</td>
<td>312</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>153-4</td>
<td>0.30</td>
<td>754</td>
<td>625</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
MATERIALS 36/46

MINIMUM INDUCTANCE WITH VARIOUS TURNS (8 mA DC BIAS)

<table>
<thead>
<tr>
<th>Part</th>
<th>30 turns</th>
<th>34 turns</th>
<th>36 turns</th>
<th>38 turns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (Oe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
<td>0-85 C</td>
</tr>
<tr>
<td>100-2</td>
<td>0.55</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100-4</td>
<td>0.55</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>115-0</td>
<td>0.45</td>
<td>442</td>
<td>365</td>
<td>506</td>
</tr>
<tr>
<td>115-1</td>
<td>0.45</td>
<td>599</td>
<td>496</td>
<td>687</td>
</tr>
<tr>
<td>119-4</td>
<td>0.50</td>
<td>826</td>
<td>665</td>
<td>994</td>
</tr>
<tr>
<td>120-8</td>
<td>0.42</td>
<td>504</td>
<td>420</td>
<td>556</td>
</tr>
<tr>
<td>121-2</td>
<td>0.45</td>
<td>--</td>
<td>--</td>
<td>612</td>
</tr>
<tr>
<td>122-3</td>
<td>0.43</td>
<td>651</td>
<td>541</td>
<td>732</td>
</tr>
<tr>
<td>135-0</td>
<td>0.40</td>
<td>410</td>
<td>343</td>
<td>435</td>
</tr>
<tr>
<td>135-1</td>
<td>0.40</td>
<td>665</td>
<td>555</td>
<td>704</td>
</tr>
<tr>
<td>135-2</td>
<td>0.40</td>
<td>279</td>
<td>233</td>
<td>--</td>
</tr>
<tr>
<td>135-4</td>
<td>0.40</td>
<td>574</td>
<td>480</td>
<td>--</td>
</tr>
<tr>
<td>135-6</td>
<td>0.40</td>
<td>492</td>
<td>411</td>
<td>--</td>
</tr>
<tr>
<td>137-0</td>
<td>0.43</td>
<td>275</td>
<td>228</td>
<td>--</td>
</tr>
<tr>
<td>145-0</td>
<td>0.40</td>
<td>--</td>
<td>--</td>
<td>1062</td>
</tr>
<tr>
<td>153-0</td>
<td>0.37</td>
<td>530</td>
<td>443</td>
<td>--</td>
</tr>
<tr>
<td>153-4</td>
<td>0.37</td>
<td>1061</td>
<td>885</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>32 turns</th>
<th>36 turns</th>
<th>38 turns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (Oe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 C</td>
<td>0-70 C</td>
<td>25 C</td>
</tr>
<tr>
<td>100-2</td>
<td>0.58</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100-4</td>
<td>0.58</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>115-0</td>
<td>0.48</td>
<td>465</td>
<td>379</td>
</tr>
<tr>
<td>115-1</td>
<td>0.48</td>
<td>631</td>
<td>514</td>
</tr>
<tr>
<td>119-4</td>
<td>0.54</td>
<td>--</td>
<td>1051</td>
</tr>
<tr>
<td>120-8</td>
<td>0.45</td>
<td>528</td>
<td>437</td>
</tr>
<tr>
<td>121-2</td>
<td>0.48</td>
<td>--</td>
<td>664</td>
</tr>
<tr>
<td>122-3</td>
<td>0.46</td>
<td>689</td>
<td>567</td>
</tr>
<tr>
<td>135-0</td>
<td>0.42</td>
<td>437</td>
<td>364</td>
</tr>
<tr>
<td>135-1</td>
<td>0.42</td>
<td>708</td>
<td>589</td>
</tr>
<tr>
<td>135-2</td>
<td>0.42</td>
<td>297</td>
<td>247</td>
</tr>
<tr>
<td>135-4</td>
<td>0.42</td>
<td>612</td>
<td>509</td>
</tr>
<tr>
<td>135-6</td>
<td>0.42</td>
<td>524</td>
<td>437</td>
</tr>
<tr>
<td>137-0</td>
<td>0.46</td>
<td>291</td>
<td>239</td>
</tr>
<tr>
<td>145-0</td>
<td>0.43</td>
<td>--</td>
<td>1160</td>
</tr>
<tr>
<td>153-0</td>
<td>0.40</td>
<td>565</td>
<td>472</td>
</tr>
<tr>
<td>153-4</td>
<td>0.40</td>
<td>1130</td>
<td>944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>36 turns</th>
<th>38 turns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (Oe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 C</td>
<td>0-70 C</td>
</tr>
<tr>
<td>100-2</td>
<td>0.65</td>
<td>--</td>
</tr>
<tr>
<td>100-4</td>
<td>0.65</td>
<td>--</td>
</tr>
<tr>
<td>115-0</td>
<td>0.54</td>
<td>--</td>
</tr>
<tr>
<td>115-1</td>
<td>0.54</td>
<td>--</td>
</tr>
<tr>
<td>119-4</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td>120-8</td>
<td>0.50</td>
<td>586</td>
</tr>
<tr>
<td>121-2</td>
<td>0.55</td>
<td>--</td>
</tr>
<tr>
<td>122-3</td>
<td>0.52</td>
<td>739</td>
</tr>
<tr>
<td>135-0</td>
<td>0.47</td>
<td>484</td>
</tr>
<tr>
<td>135-1</td>
<td>0.47</td>
<td>784</td>
</tr>
<tr>
<td>135-2</td>
<td>0.47</td>
<td>329</td>
</tr>
<tr>
<td>135-4</td>
<td>0.47</td>
<td>678</td>
</tr>
<tr>
<td>135-6</td>
<td>0.47</td>
<td>581</td>
</tr>
<tr>
<td>137-0</td>
<td>0.52</td>
<td>312</td>
</tr>
<tr>
<td>145-0</td>
<td>0.48</td>
<td>--</td>
</tr>
<tr>
<td>153-0</td>
<td>0.45</td>
<td>616</td>
</tr>
<tr>
<td>153-4</td>
<td>0.45</td>
<td>1232</td>
</tr>
<tr>
<td>Part</td>
<td>20 turns (25°C)</td>
<td>20 turns (0-70°C)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>16mA 18mA 20mA 24mA 30mA 32mA</td>
<td>16mA 18mA 20mA 24mA 30mA 32mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td>466 443 421 369 287 - -</td>
<td>439 405 375 312 228 - -</td>
</tr>
<tr>
<td>66T0153-40P</td>
<td>397 378 359 314 244 - -</td>
<td>375 346 319 266 194 - -</td>
</tr>
<tr>
<td>66T0154-70P</td>
<td>423 399 378 325 - - - -</td>
<td>279 270 249 215 166 153</td>
</tr>
<tr>
<td>66T0155-00P</td>
<td>281 267 254 229 184 170</td>
<td>322 309 271 212 195</td>
</tr>
<tr>
<td>66T0157-00P</td>
<td>353 343 329 303 253 238</td>
<td>469 457 440 404 346 325</td>
</tr>
<tr>
<td>66T0175-20P</td>
<td>281 267 254 229 184 170</td>
<td>353 343 329 303 253 238</td>
</tr>
<tr>
<td>66T0190-80P</td>
<td>702 684 659 606 518 487</td>
<td>659 644 623 548 438 404</td>
</tr>
<tr>
<td>66T0190-70P</td>
<td>481 473 464 440 394 379</td>
<td>405 400 393 380 331 314</td>
</tr>
<tr>
<td>66T0220-00P</td>
<td>433 427 419 403 365 352</td>
<td>353 343 329 303 253 238</td>
</tr>
<tr>
<td>66T0231-10P</td>
<td>610 602 590 567 513 496</td>
<td>467 461 452 437 381 361</td>
</tr>
<tr>
<td>66T0231-70P</td>
<td>499 492 482 463 419 405</td>
<td>610 602 590 567 513 496</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>540 513 479 403 - - - -</td>
<td>540 513 479 403 - - - -</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td>231 215 204 181 152 - -</td>
<td>497 480 461 332 - - - -</td>
</tr>
<tr>
<td>66T0153-40P</td>
<td>197 183 174 154 129 - -</td>
<td>491 458 424 355 - - - -</td>
</tr>
<tr>
<td>66T0154-70P</td>
<td>209 193 183 161 - - - -</td>
<td>449 404 363 288 - - - -</td>
</tr>
<tr>
<td>66T0155-00P</td>
<td>150 142 132 119 102 97</td>
<td>491 458 424 355 - - - -</td>
</tr>
<tr>
<td>66T0157-00P</td>
<td>141 132 123 111 94 89</td>
<td>449 404 363 288 - - - -</td>
</tr>
<tr>
<td>66T0175-20P</td>
<td>182 173 163 147 125 120</td>
<td>449 404 363 288 - - - -</td>
</tr>
<tr>
<td>66T0190-80P</td>
<td>245 232 219 196 170 162</td>
<td>348 311 278 220 - - - -</td>
</tr>
<tr>
<td>66T0190-70P</td>
<td>366 348 328 294 254 242</td>
<td>326 310 295 254 197 - -</td>
</tr>
<tr>
<td>66T0220-00P</td>
<td>259 249 239 219 191 184</td>
<td>326 310 295 254 197 - -</td>
</tr>
<tr>
<td>66T0231-10P</td>
<td>236 227 219 203 177 170</td>
<td>326 310 295 254 197 - -</td>
</tr>
<tr>
<td>66T0231-70P</td>
<td>333 320 308 286 249 240</td>
<td>326 310 295 254 197 - -</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>272 262 251 233 203 196</td>
<td>326 310 295 254 197 - -</td>
</tr>
</tbody>
</table>
MATERIALS 66

MINIMUM INDUCTANCE WITH VARIOUS TURNS

<table>
<thead>
<tr>
<th>Part</th>
<th>24 turns (25°C)</th>
<th>24 turns (0-70°C)</th>
<th>26 turns (25°C)</th>
<th>26 turns (-40°–85°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 mA</td>
<td>18 mA</td>
<td>20 mA</td>
<td>24 mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0153-40P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0154-70P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0155-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0157-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0157-20P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0159-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0159-10P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0190-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0190-10P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0231-10P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

www.lairdtech.com
<table>
<thead>
<tr>
<th>Part</th>
<th>28 turns (25°C)</th>
<th>28 turns (0-70°C)</th>
<th>30 turns (25°C)</th>
<th>30 turns (0-70°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16mA 18mA 20mA 24mA 30mA 32mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0153-40P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0154-70P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0155-00P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0157-20P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0190-80P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0190-70P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0220-00P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0231-10P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0238-00P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>28 turns (-40-+85°C)</th>
<th>30 turns (25°C)</th>
<th>30 turns (-40-+85°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16mA 18mA 20mA 24mA 30mA 32mA</td>
<td>16mA 18mA 20mA 24mA 30mA 32mA</td>
<td>16mA 18mA 20mA 24mA 30mA 32mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0153-40P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0154-70P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0155-00P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0157-20P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0190-80P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0190-70P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0220-00P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0231-10P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66T0238-00P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.lairdtech.com
MATERIALS 66

MINIMUM INDUCTANCE WITH VARIOUS TURNS

<table>
<thead>
<tr>
<th>Part</th>
<th>32 turns (25°C)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16mA</td>
<td>18mA</td>
<td>20mA</td>
<td>24mA</td>
<td>30mA</td>
<td>32mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td>887</td>
<td>777</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0153-40P</td>
<td>756</td>
<td>662</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0154-70P</td>
<td>781</td>
<td>681</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0155-00P</td>
<td>601</td>
<td>539</td>
<td>484</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0157-00P</td>
<td>551</td>
<td>492</td>
<td>435</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0175-20P</td>
<td>747</td>
<td>673</td>
<td>609</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0190-80P</td>
<td>1000</td>
<td>917</td>
<td>831</td>
<td>667</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0190-70P</td>
<td>1498</td>
<td>1374</td>
<td>1246</td>
<td>1000</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0220-00P</td>
<td>1089</td>
<td>1035</td>
<td>971</td>
<td>831</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0231-10P</td>
<td>1006</td>
<td>949</td>
<td>901</td>
<td>791</td>
<td>614</td>
<td>--</td>
</tr>
<tr>
<td>66T0231-70P</td>
<td>1417</td>
<td>1337</td>
<td>1269</td>
<td>1113</td>
<td>865</td>
<td>--</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>1149</td>
<td>1092</td>
<td>1037</td>
<td>910</td>
<td>707</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>32 turns (0-70°C)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16mA</td>
<td>18mA</td>
<td>20mA</td>
<td>24mA</td>
<td>30mA</td>
<td>32mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td>737</td>
<td>625</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0153-40P</td>
<td>629</td>
<td>533</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0154-70P</td>
<td>642</td>
<td>544</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0155-00P</td>
<td>517</td>
<td>448</td>
<td>392</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0157-00P</td>
<td>466</td>
<td>403</td>
<td>347</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0175-20P</td>
<td>656</td>
<td>569</td>
<td>500</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0190-80P</td>
<td>886</td>
<td>786</td>
<td>691</td>
<td>527</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0190-70P</td>
<td>1328</td>
<td>1178</td>
<td>1035</td>
<td>790</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0220-00P</td>
<td>1012</td>
<td>935</td>
<td>849</td>
<td>690</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0231-10P</td>
<td>952</td>
<td>869</td>
<td>803</td>
<td>668</td>
<td>489</td>
<td>--</td>
</tr>
<tr>
<td>66T0231-70P</td>
<td>1340</td>
<td>1224</td>
<td>1131</td>
<td>941</td>
<td>688</td>
<td>--</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>1084</td>
<td>1000</td>
<td>924</td>
<td>769</td>
<td>562</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>32 turns (-40-+85°C)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16mA</td>
<td>18mA</td>
<td>20mA</td>
<td>24mA</td>
<td>30mA</td>
<td>32mA</td>
</tr>
<tr>
<td>66T0153-30P</td>
<td>442</td>
<td>403</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0153-40P</td>
<td>377</td>
<td>344</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0154-70P</td>
<td>394</td>
<td>359</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0155-00P</td>
<td>293</td>
<td>268</td>
<td>249</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0157-00P</td>
<td>271</td>
<td>249</td>
<td>229</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0175-20P</td>
<td>361</td>
<td>330</td>
<td>307</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0190-80P</td>
<td>484</td>
<td>448</td>
<td>414</td>
<td>357</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0190-70P</td>
<td>725</td>
<td>671</td>
<td>621</td>
<td>535</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0220-00P</td>
<td>533</td>
<td>502</td>
<td>470</td>
<td>414</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>66T0231-10P</td>
<td>501</td>
<td>461</td>
<td>436</td>
<td>388</td>
<td>325</td>
<td>--</td>
</tr>
<tr>
<td>66T0231-70P</td>
<td>705</td>
<td>649</td>
<td>615</td>
<td>546</td>
<td>458</td>
<td>--</td>
</tr>
<tr>
<td>66T0238-00P</td>
<td>569</td>
<td>530</td>
<td>502</td>
<td>446</td>
<td>374</td>
<td>--</td>
</tr>
</tbody>
</table>
High Permeability Materials 42 & 40
For Telecom & Low Frequency Filtering

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>42</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Initial Permeability</td>
<td>(\mu_i)</td>
<td></td>
<td>7500</td>
<td>10000</td>
</tr>
<tr>
<td>Tolerance</td>
<td>(\Delta)</td>
<td>%</td>
<td>± 25</td>
<td>± 30</td>
</tr>
<tr>
<td>Saturation Flux Density</td>
<td>(B_s)</td>
<td>Gauss</td>
<td>4100</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mT</td>
<td>410</td>
<td>380</td>
</tr>
<tr>
<td>at Field Intensity</td>
<td>(H)</td>
<td>Oersteds</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/m</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Residual Flux Density</td>
<td>(B_r)</td>
<td>Gauss</td>
<td>1100</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mT</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>Coercive Force</td>
<td>(H_c)</td>
<td>Oersteds</td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/m</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Relative Loss Factor at Frequency</td>
<td>(\tan\delta \frac{\mu_i}{f})</td>
<td>(10^6) MHz</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Curie Temperature</td>
<td>(T_C)</td>
<td>°C</td>
<td>> 130</td>
<td>> 120</td>
</tr>
<tr>
<td>Resistivity</td>
<td>(\rho)</td>
<td>(\Omega)-cm</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td>g/cm(^3)</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>
COMPARING MATERIALS
PERMEABILITY VS. TEMPERATURE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Material 40 High Permeability</th>
<th>Material 42 Broad Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10,000 Nominal Perm</td>
<td>7500 Nominal Perm</td>
</tr>
<tr>
<td></td>
<td>A_i @ 100 KHz (nH/T)</td>
<td>A_i @ 25°C (nH/T)</td>
</tr>
<tr>
<td>*T0100-20P</td>
<td>1056</td>
<td>792</td>
</tr>
<tr>
<td>*T0119-00P</td>
<td>2224</td>
<td>1688</td>
</tr>
<tr>
<td>*T0135-10P</td>
<td>2703</td>
<td>2027</td>
</tr>
<tr>
<td>*T0155-00P</td>
<td>2876</td>
<td>2157</td>
</tr>
<tr>
<td>*T0231-10P</td>
<td>3966</td>
<td>2974</td>
</tr>
<tr>
<td>*T0238-00P</td>
<td>4564</td>
<td>3422</td>
</tr>
<tr>
<td>*T0301-00P</td>
<td>8361</td>
<td>6270</td>
</tr>
<tr>
<td>*T0325-00P</td>
<td>5912</td>
<td>4434</td>
</tr>
</tbody>
</table>
MATERIAL 42
TELECOM BROAD TEMPERATURE
7,500 PERMEABILITY

Initial Permeability vs. Temperature

Permeability & Loss Factor vs. Frequency

Amplitude Permeability

Saturation Flux Density vs. Temperature
MATERIAL 40
TELECOM HIGH PERMEABILITY

10,000 PERMEABILITY

![Graphs showing initial permeability vs. temperature, permeability & loss factor vs. frequency, amplitude permeability, and saturation flux density vs. temperature.](image)
OTHER MATERIALS 35 & 39

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>UNIT</th>
<th>35</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Initial Permeability</td>
<td>μ_i</td>
<td></td>
<td>5000</td>
<td>7000</td>
</tr>
<tr>
<td>A_i Tolerance</td>
<td>%</td>
<td>± 20</td>
<td>± 25</td>
<td></td>
</tr>
<tr>
<td>Saturation Flux Density</td>
<td>B_t</td>
<td>Gauss</td>
<td>4500</td>
<td>3800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mT</td>
<td>450</td>
<td>380</td>
</tr>
<tr>
<td>at Field Intensity</td>
<td>H</td>
<td>Oersteds</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/m</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>Saturation Flux Density</td>
<td>B_t</td>
<td>Gauss</td>
<td>1000</td>
<td>730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mT</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td>Residual Flux Density</td>
<td>H_c</td>
<td>Oersteds</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/m</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Coercive Force</td>
<td>H_C</td>
<td>Oersteds</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Relative Loss Factor at Frequency</td>
<td>$\tan \delta \mu_i$</td>
<td>MHz</td>
<td>≤ 20</td>
<td>≤ 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.100</td>
<td>0.010</td>
</tr>
<tr>
<td>Curie Temperature</td>
<td>T_c</td>
<td>°C</td>
<td>> 150</td>
<td>> 130</td>
</tr>
<tr>
<td>Resistivity</td>
<td>ρ</td>
<td>Ω-cm</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td>g/cm³</td>
<td>4.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>
MATERIAL 39

7,000 PERMEABILITY

Initial Permeability vs. Temperature

Permeability & Loss Factor vs. Frequency

Amplitude Permeability vs. Flux Density

Saturation Flux Density vs. Temperature
MATERIALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>35 LF</th>
<th>28 MF</th>
<th>25 HF</th>
<th>38 BH</th>
<th>36 DC Bias Standard Temp</th>
<th>46 DC Bias Extended Temp</th>
<th>66 DC Bias Extended Temp for PoE and PoE+</th>
<th>42</th>
<th>40</th>
<th>35</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Initial Permeability</td>
<td>μ_i</td>
<td></td>
<td>5000</td>
<td>850</td>
<td>125</td>
<td>5000</td>
<td>4000</td>
<td>5500</td>
<td>3200</td>
<td>7500</td>
<td>10000</td>
<td>5000</td>
<td>7000</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td>%</td>
<td>± 20</td>
<td>± 20</td>
<td>± 30</td>
<td>± 25</td>
<td>± 25</td>
<td>± 25</td>
<td>± 25</td>
<td>± 20</td>
<td>± 25</td>
<td>± 20</td>
<td>± 25</td>
</tr>
<tr>
<td>Saturation Flux Density</td>
<td>B_t</td>
<td>Gauss</td>
<td>4500</td>
<td>3250</td>
<td>3600</td>
<td>5000</td>
<td>4500</td>
<td>4500</td>
<td>4800</td>
<td>4100</td>
<td>3800</td>
<td>4500</td>
<td>3800</td>
</tr>
<tr>
<td>at Field Intensity</td>
<td>H</td>
<td>Oersteds</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>Residual Flux Density</td>
<td>B_r</td>
<td>Gauss</td>
<td>1000</td>
<td>2000</td>
<td>1500</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1300</td>
<td>1100</td>
<td>1400</td>
<td>1000</td>
<td>730</td>
</tr>
<tr>
<td>Coercive Force</td>
<td>H_c</td>
<td>Oersteds</td>
<td>0.10</td>
<td>0.40</td>
<td>1.60</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td>0.125</td>
<td>0.10</td>
<td>0.04</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Relative Loss Factor</td>
<td>$\tan \delta$</td>
<td>MHz</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.010</td>
<td>0.10</td>
<td>0.010</td>
</tr>
<tr>
<td>Curie Temperature</td>
<td>T_c</td>
<td>°C</td>
<td>> 150</td>
<td>> 175</td>
<td>> 225</td>
<td>> 120</td>
<td>> 150</td>
<td>> 150</td>
<td>> 130</td>
<td>> 200</td>
<td>> 130</td>
<td>> 120</td>
<td>> 150</td>
</tr>
<tr>
<td>Resistivity</td>
<td>ρ</td>
<td>Ω·cm</td>
<td>10^2</td>
<td>10^1</td>
<td>10^2</td>
<td>10^2</td>
<td>10^2</td>
<td>10^2</td>
<td>500</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Density</td>
<td></td>
<td>g/cm³</td>
<td>4.8</td>
<td>4.9</td>
<td>4.9</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.9</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Part Number</td>
<td>MM</td>
<td>INCHES</td>
<td>wt/k</td>
<td>L_o</td>
<td>A_o</td>
<td>V_e</td>
<td>C_i</td>
<td>MLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD</td>
<td>ID</td>
<td>HT</td>
<td>OD</td>
<td>ID</td>
<td>HT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0100-00P</td>
<td>2.54</td>
<td>1.27</td>
<td>1.27</td>
<td>0.100</td>
<td>0.050</td>
<td>0.050</td>
<td>0.02</td>
<td>5.531</td>
<td>0.775</td>
<td>4.286</td>
<td>7.138</td>
<td>3.81</td>
<td></td>
</tr>
<tr>
<td>*T0100-20P</td>
<td>2.54</td>
<td>1.27</td>
<td>0.76</td>
<td>0.100</td>
<td>0.050</td>
<td>0.030</td>
<td>0.01</td>
<td>5.531</td>
<td>0.465</td>
<td>2.572</td>
<td>11.896</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>*T0100-30P</td>
<td>2.54</td>
<td>1.27</td>
<td>0.99</td>
<td>0.100</td>
<td>0.050</td>
<td>0.040</td>
<td>0.02</td>
<td>5.531</td>
<td>0.604</td>
<td>3.343</td>
<td>9.151</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>*T0100-40P</td>
<td>2.54</td>
<td>1.27</td>
<td>2.54</td>
<td>0.100</td>
<td>0.050</td>
<td>0.100</td>
<td>0.05</td>
<td>5.531</td>
<td>1.550</td>
<td>8.572</td>
<td>3.569</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>*T0101-10P</td>
<td>2.54</td>
<td>1.50</td>
<td>0.99</td>
<td>0.100</td>
<td>0.060</td>
<td>0.040</td>
<td>0.02</td>
<td>6.059</td>
<td>0.504</td>
<td>3.054</td>
<td>12.021</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>*T0115-00P</td>
<td>2.92</td>
<td>1.63</td>
<td>1.78</td>
<td>0.120</td>
<td>0.060</td>
<td>0.070</td>
<td>0.04</td>
<td>6.749</td>
<td>1.119</td>
<td>7.553</td>
<td>6.030</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td>*T0115-10P</td>
<td>2.92</td>
<td>1.63</td>
<td>2.41</td>
<td>0.120</td>
<td>0.060</td>
<td>0.100</td>
<td>0.05</td>
<td>6.749</td>
<td>1.519</td>
<td>10.251</td>
<td>4.443</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>*T0119-00P</td>
<td>3.05</td>
<td>1.27</td>
<td>1.27</td>
<td>0.120</td>
<td>0.050</td>
<td>0.050</td>
<td>0.04</td>
<td>5.988</td>
<td>1.060</td>
<td>6.345</td>
<td>5.651</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>*T0119-10P</td>
<td>3.05</td>
<td>1.27</td>
<td>0.76</td>
<td>0.120</td>
<td>0.050</td>
<td>0.030</td>
<td>0.02</td>
<td>5.988</td>
<td>0.636</td>
<td>3.807</td>
<td>9.419</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>*T0119-20P</td>
<td>3.05</td>
<td>1.27</td>
<td>0.86</td>
<td>0.120</td>
<td>0.050</td>
<td>0.030</td>
<td>0.03</td>
<td>5.988</td>
<td>0.721</td>
<td>4.314</td>
<td>8.310</td>
<td>3.51</td>
<td></td>
</tr>
<tr>
<td>*T0119-40P</td>
<td>3.05</td>
<td>1.27</td>
<td>2.54</td>
<td>0.120</td>
<td>0.050</td>
<td>0.100</td>
<td>0.07</td>
<td>5.988</td>
<td>2.119</td>
<td>12.690</td>
<td>2.826</td>
<td>6.86</td>
<td></td>
</tr>
<tr>
<td>*T0120-00P</td>
<td>3.05</td>
<td>1.78</td>
<td>1.52</td>
<td>0.120</td>
<td>0.070</td>
<td>0.060</td>
<td>0.04</td>
<td>7.226</td>
<td>0.945</td>
<td>6.826</td>
<td>7.649</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>*T0120-80P</td>
<td>3.05</td>
<td>1.78</td>
<td>2.03</td>
<td>0.120</td>
<td>0.070</td>
<td>0.080</td>
<td>0.05</td>
<td>7.226</td>
<td>1.260</td>
<td>9.101</td>
<td>5.737</td>
<td>5.33</td>
<td></td>
</tr>
<tr>
<td>*T0121-20P</td>
<td>3.05</td>
<td>1.52</td>
<td>2.06</td>
<td>0.120</td>
<td>0.060</td>
<td>0.080</td>
<td>0.05</td>
<td>6.637</td>
<td>1.506</td>
<td>10.000</td>
<td>4.406</td>
<td>5.64</td>
<td></td>
</tr>
<tr>
<td>*T0122-00P</td>
<td>3.05</td>
<td>1.65</td>
<td>1.65</td>
<td>0.120</td>
<td>0.070</td>
<td>0.070</td>
<td>0.04</td>
<td>6.938</td>
<td>1.118</td>
<td>7.755</td>
<td>6.207</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>*T0122-30P</td>
<td>3.05</td>
<td>1.65</td>
<td>2.39</td>
<td>0.120</td>
<td>0.070</td>
<td>0.090</td>
<td>0.06</td>
<td>6.938</td>
<td>1.616</td>
<td>11.215</td>
<td>4.292</td>
<td>6.17</td>
<td></td>
</tr>
<tr>
<td>*T0130-00P</td>
<td>3.30</td>
<td>1.27</td>
<td>1.27</td>
<td>0.130</td>
<td>0.050</td>
<td>0.050</td>
<td>0.05</td>
<td>6.195</td>
<td>1.196</td>
<td>7.412</td>
<td>5.178</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>*T0135-00P</td>
<td>3.43</td>
<td>1.78</td>
<td>1.27</td>
<td>0.140</td>
<td>0.070</td>
<td>0.050</td>
<td>0.04</td>
<td>7.619</td>
<td>1.011</td>
<td>7.707</td>
<td>7.533</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>*T0135-10P</td>
<td>3.43</td>
<td>1.78</td>
<td>2.06</td>
<td>0.140</td>
<td>0.070</td>
<td>0.080</td>
<td>0.07</td>
<td>7.619</td>
<td>1.639</td>
<td>12.485</td>
<td>4.650</td>
<td>5.77</td>
<td></td>
</tr>
<tr>
<td>*T0135-20P</td>
<td>3.43</td>
<td>1.78</td>
<td>0.86</td>
<td>0.140</td>
<td>0.070</td>
<td>0.030</td>
<td>0.03</td>
<td>7.619</td>
<td>0.688</td>
<td>5.241</td>
<td>11.078</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>*T0135-30P</td>
<td>3.43</td>
<td>1.78</td>
<td>2.54</td>
<td>0.140</td>
<td>0.070</td>
<td>0.100</td>
<td>0.08</td>
<td>7.619</td>
<td>2.023</td>
<td>15.414</td>
<td>3.766</td>
<td>6.73</td>
<td></td>
</tr>
<tr>
<td>*T0135-40P</td>
<td>3.43</td>
<td>1.78</td>
<td>1.78</td>
<td>0.140</td>
<td>0.070</td>
<td>0.070</td>
<td>0.06</td>
<td>7.619</td>
<td>1.416</td>
<td>10.790</td>
<td>5.381</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>*T0135-60P</td>
<td>3.43</td>
<td>1.78</td>
<td>1.52</td>
<td>0.140</td>
<td>0.070</td>
<td>0.060</td>
<td>0.05</td>
<td>7.619</td>
<td>1.214</td>
<td>9.248</td>
<td>6.277</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>*T0137-00P</td>
<td>3.43</td>
<td>1.52</td>
<td>0.76</td>
<td>0.140</td>
<td>0.060</td>
<td>0.030</td>
<td>0.03</td>
<td>6.989</td>
<td>0.687</td>
<td>4.803</td>
<td>10.168</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td>*T0145-00P</td>
<td>3.68</td>
<td>1.65</td>
<td>2.54</td>
<td>0.150</td>
<td>0.070</td>
<td>0.100</td>
<td>0.11</td>
<td>7.543</td>
<td>2.447</td>
<td>18.454</td>
<td>3.083</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>*T0153-00P</td>
<td>3.94</td>
<td>1.78</td>
<td>1.27</td>
<td>0.160</td>
<td>0.070</td>
<td>0.050</td>
<td>0.06</td>
<td>8.097</td>
<td>1.301</td>
<td>10.534</td>
<td>6.224</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>*T0153-30P</td>
<td>3.94</td>
<td>1.78</td>
<td>2.98</td>
<td>0.160</td>
<td>0.070</td>
<td>0.120</td>
<td>0.17</td>
<td>8.054</td>
<td>3.142</td>
<td>25.309</td>
<td>2.563</td>
<td>8.22</td>
<td></td>
</tr>
<tr>
<td>*T0153-40P</td>
<td>3.94</td>
<td>1.78</td>
<td>2.54</td>
<td>0.155</td>
<td>0.070</td>
<td>0.100</td>
<td>0.14</td>
<td>8.054</td>
<td>2.682</td>
<td>21.603</td>
<td>3.002</td>
<td>7.34</td>
<td></td>
</tr>
</tbody>
</table>
TOROID SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Common Mode</th>
<th>DC Bias</th>
<th>Telecom</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>28</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>850</td>
<td>1700</td>
<td>4500</td>
</tr>
<tr>
<td>*T0100-00P</td>
<td>22</td>
<td>150</td>
<td>299</td>
<td>--</td>
</tr>
<tr>
<td>*T0100-20P</td>
<td>13</td>
<td>90</td>
<td>180</td>
<td>475</td>
</tr>
<tr>
<td>*T0100-30P</td>
<td>--</td>
<td>117</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0100-40P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1585</td>
</tr>
<tr>
<td>*T0101-10P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0115-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>938</td>
</tr>
<tr>
<td>*T0115-10P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1273</td>
</tr>
<tr>
<td>*T0119-00P</td>
<td>28</td>
<td>189</td>
<td>378</td>
<td>--</td>
</tr>
<tr>
<td>*T0119-10P</td>
<td>--</td>
<td>113</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0119-20P</td>
<td>--</td>
<td>129</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0119-40P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2001</td>
</tr>
<tr>
<td>*T0120-00P</td>
<td>21</td>
<td>140</td>
<td>279</td>
<td>--</td>
</tr>
<tr>
<td>*T0120-80P</td>
<td>--</td>
<td>186</td>
<td>--</td>
<td>986</td>
</tr>
<tr>
<td>*T0121-20P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0122-00P</td>
<td>--</td>
<td>172</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0122-30P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1317</td>
</tr>
<tr>
<td>*T0130-00P</td>
<td>--</td>
<td>206</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0135-00P</td>
<td>21</td>
<td>142</td>
<td>284</td>
<td>751</td>
</tr>
<tr>
<td>*T0135-10P</td>
<td>--</td>
<td>230</td>
<td>--</td>
<td>1216</td>
</tr>
<tr>
<td>*T0135-20P</td>
<td>14</td>
<td>96</td>
<td>--</td>
<td>510</td>
</tr>
<tr>
<td>*T0135-30P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0135-40P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1051</td>
</tr>
<tr>
<td>*T0135-60P</td>
<td>25</td>
<td>170</td>
<td>340</td>
<td>901</td>
</tr>
<tr>
<td>*T0137-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>556</td>
</tr>
<tr>
<td>*T0145-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0153-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>909</td>
</tr>
<tr>
<td>*T0153-30P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>*T0153-40P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1817</td>
</tr>
</tbody>
</table>

Catalog Parts are designated by AL value.
TOROID SPECIFICATIONS

Custom Parts Also Available

<table>
<thead>
<tr>
<th>Part Number</th>
<th>OD</th>
<th>ID</th>
<th>HT</th>
<th>OD</th>
<th>ID</th>
<th>HT</th>
<th>wt/k</th>
<th>L_e</th>
<th>A_e</th>
<th>V_e</th>
<th>C_i</th>
<th>MLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0153-60P</td>
<td>3.94</td>
<td>1.78</td>
<td>1.52</td>
<td>0.155</td>
<td>0.070</td>
<td>0.060</td>
<td>0.07</td>
<td>8.097</td>
<td>1.561</td>
<td>12.641</td>
<td>5.186</td>
<td>5.21</td>
</tr>
<tr>
<td>T0153-70P</td>
<td>3.94</td>
<td>1.78</td>
<td>1.78</td>
<td>0.155</td>
<td>0.070</td>
<td>0.070</td>
<td>0.08</td>
<td>8.097</td>
<td>1.821</td>
<td>14.748</td>
<td>4.445</td>
<td>5.72</td>
</tr>
<tr>
<td>T0154-00P</td>
<td>3.94</td>
<td>1.68</td>
<td>1.37</td>
<td>0.155</td>
<td>0.066</td>
<td>0.054</td>
<td>0.07</td>
<td>7.831</td>
<td>1.459</td>
<td>11.429</td>
<td>5.366</td>
<td>5.00</td>
</tr>
<tr>
<td>T0154-70P</td>
<td>3.94</td>
<td>1.68</td>
<td>2.54</td>
<td>0.155</td>
<td>0.066</td>
<td>0.100</td>
<td>0.15</td>
<td>7.784</td>
<td>2.783</td>
<td>21.660</td>
<td>2.798</td>
<td>7.44</td>
</tr>
<tr>
<td>T0155-00P</td>
<td>3.94</td>
<td>2.24</td>
<td>2.54</td>
<td>0.155</td>
<td>0.088</td>
<td>0.100</td>
<td>0.14</td>
<td>9.165</td>
<td>2.185</td>
<td>20.029</td>
<td>4.194</td>
<td>6.88</td>
</tr>
<tr>
<td>T0155-10P</td>
<td>3.94</td>
<td>2.24</td>
<td>1.27</td>
<td>0.155</td>
<td>0.088</td>
<td>0.050</td>
<td>0.05</td>
<td>9.196</td>
<td>1.052</td>
<td>9.677</td>
<td>8.740</td>
<td>4.24</td>
</tr>
<tr>
<td>T0155-20P</td>
<td>3.94</td>
<td>2.24</td>
<td>2.01</td>
<td>0.155</td>
<td>0.088</td>
<td>0.079</td>
<td>0.08</td>
<td>9.166</td>
<td>1.663</td>
<td>15.289</td>
<td>5.531</td>
<td>5.72</td>
</tr>
<tr>
<td>T0155-80P</td>
<td>3.94</td>
<td>2.24</td>
<td>1.65</td>
<td>0.155</td>
<td>0.088</td>
<td>0.065</td>
<td>0.07</td>
<td>9.196</td>
<td>1.368</td>
<td>12.580</td>
<td>6.723</td>
<td>5.00</td>
</tr>
<tr>
<td>T0157-00P</td>
<td>4.00</td>
<td>2.01</td>
<td>2.01</td>
<td>0.157</td>
<td>0.079</td>
<td>0.079</td>
<td>0.12</td>
<td>8.687</td>
<td>1.990</td>
<td>17.289</td>
<td>4.365</td>
<td>6.11</td>
</tr>
<tr>
<td>T0157-10P</td>
<td>3.99</td>
<td>2.01</td>
<td>0.99</td>
<td>0.157</td>
<td>0.079</td>
<td>0.039</td>
<td>0.05</td>
<td>8.715</td>
<td>0.944</td>
<td>8.223</td>
<td>9.235</td>
<td>3.96</td>
</tr>
<tr>
<td>T0175-20P</td>
<td>4.45</td>
<td>2.29</td>
<td>2.54</td>
<td>0.175</td>
<td>0.090</td>
<td>0.100</td>
<td>0.18</td>
<td>9.796</td>
<td>2.727</td>
<td>26.716</td>
<td>3.592</td>
<td>7.34</td>
</tr>
<tr>
<td>T0190-00P</td>
<td>4.83</td>
<td>2.29</td>
<td>2.54</td>
<td>0.190</td>
<td>0.090</td>
<td>0.100</td>
<td>0.18</td>
<td>10.196</td>
<td>3.080</td>
<td>31.401</td>
<td>3.311</td>
<td>7.62</td>
</tr>
<tr>
<td>T0190-10P</td>
<td>4.83</td>
<td>2.29</td>
<td>1.27</td>
<td>0.190</td>
<td>0.090</td>
<td>0.050</td>
<td>0.09</td>
<td>10.196</td>
<td>1.540</td>
<td>15.701</td>
<td>6.621</td>
<td>5.08</td>
</tr>
<tr>
<td>T0190-70P</td>
<td>4.83</td>
<td>2.29</td>
<td>4.45</td>
<td>0.190</td>
<td>0.090</td>
<td>0.175</td>
<td>0.38</td>
<td>10.196</td>
<td>5.396</td>
<td>55.014</td>
<td>1.890</td>
<td>11.44</td>
</tr>
<tr>
<td>T0190-80P</td>
<td>4.83</td>
<td>2.29</td>
<td>2.97</td>
<td>0.190</td>
<td>0.090</td>
<td>0.117</td>
<td>0.26</td>
<td>10.155</td>
<td>3.697</td>
<td>37.545</td>
<td>2.747</td>
<td>8.58</td>
</tr>
<tr>
<td>T0195-20P</td>
<td>4.95</td>
<td>1.57</td>
<td>0.76</td>
<td>0.195</td>
<td>0.062</td>
<td>0.030</td>
<td>0.06</td>
<td>8.312</td>
<td>1.155</td>
<td>9.601</td>
<td>7.196</td>
<td>4.90</td>
</tr>
<tr>
<td>T0220-00P</td>
<td>5.60</td>
<td>2.80</td>
<td>3.20</td>
<td>0.220</td>
<td>0.110</td>
<td>0.126</td>
<td>0.37</td>
<td>12.194</td>
<td>4.305</td>
<td>52.502</td>
<td>2.832</td>
<td>9.20</td>
</tr>
<tr>
<td>T0231-00P</td>
<td>5.84</td>
<td>3.05</td>
<td>1.52</td>
<td>0.230</td>
<td>0.120</td>
<td>0.060</td>
<td>0.14</td>
<td>13.026</td>
<td>2.055</td>
<td>26.775</td>
<td>6.337</td>
<td>5.84</td>
</tr>
<tr>
<td>T0231-10P</td>
<td>5.84</td>
<td>3.05</td>
<td>3.05</td>
<td>0.230</td>
<td>0.120</td>
<td>0.120</td>
<td>0.39</td>
<td>12.991</td>
<td>4.215</td>
<td>54.753</td>
<td>3.082</td>
<td>8.99</td>
</tr>
<tr>
<td>T0231-20P</td>
<td>5.84</td>
<td>3.05</td>
<td>3.18</td>
<td>0.230</td>
<td>0.120</td>
<td>0.125</td>
<td>0.30</td>
<td>13.026</td>
<td>4.282</td>
<td>55.780</td>
<td>3.042</td>
<td>9.14</td>
</tr>
<tr>
<td>T0231-30P</td>
<td>5.84</td>
<td>3.05</td>
<td>2.54</td>
<td>0.230</td>
<td>0.120</td>
<td>0.100</td>
<td>0.24</td>
<td>13.026</td>
<td>3.426</td>
<td>44.624</td>
<td>3.802</td>
<td>7.87</td>
</tr>
<tr>
<td>T0231-50P</td>
<td>5.84</td>
<td>3.05</td>
<td>2.03</td>
<td>0.230</td>
<td>0.120</td>
<td>0.080</td>
<td>0.19</td>
<td>13.026</td>
<td>2.741</td>
<td>35.699</td>
<td>4.753</td>
<td>6.86</td>
</tr>
<tr>
<td>T0231-70P</td>
<td>5.84</td>
<td>3.05</td>
<td>4.29</td>
<td>0.230</td>
<td>0.120</td>
<td>0.169</td>
<td>0.55</td>
<td>12.991</td>
<td>5.922</td>
<td>76.926</td>
<td>2.194</td>
<td>11.48</td>
</tr>
<tr>
<td>T0238-00P</td>
<td>6.05</td>
<td>2.95</td>
<td>3.18</td>
<td>0.238</td>
<td>0.116</td>
<td>0.125</td>
<td>0.44</td>
<td>12.939</td>
<td>4.821</td>
<td>62.379</td>
<td>2.684</td>
<td>9.55</td>
</tr>
<tr>
<td>T0301-00P</td>
<td>7.62</td>
<td>3.18</td>
<td>4.78</td>
<td>0.300</td>
<td>0.125</td>
<td>0.188</td>
<td>0.88</td>
<td>14.970</td>
<td>9.960</td>
<td>149.103</td>
<td>1.503</td>
<td>14.00</td>
</tr>
<tr>
<td>T0315-00P</td>
<td>8.00</td>
<td>3.18</td>
<td>4.78</td>
<td>0.315</td>
<td>0.125</td>
<td>0.188</td>
<td>0.99</td>
<td>15.284</td>
<td>10.736</td>
<td>164.094</td>
<td>1.424</td>
<td>14.38</td>
</tr>
<tr>
<td>T0325-00P</td>
<td>8.26</td>
<td>4.45</td>
<td>4.78</td>
<td>0.325</td>
<td>0.175</td>
<td>0.188</td>
<td>0.89</td>
<td>18.730</td>
<td>8.812</td>
<td>165.042</td>
<td>2.126</td>
<td>13.36</td>
</tr>
</tbody>
</table>
TOROID SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Common Mode</th>
<th>DC Bias</th>
<th>Telecom</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>28</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>T0153-60P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1090</td>
</tr>
<tr>
<td>T0153-70P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1272</td>
</tr>
<tr>
<td>T0154-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0154-70P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0155-00P</td>
<td>--</td>
<td>244</td>
<td>--</td>
<td>1294</td>
</tr>
<tr>
<td>T0155-10P</td>
<td>18</td>
<td>122</td>
<td>244</td>
<td>--</td>
</tr>
<tr>
<td>T0155-20P</td>
<td>--</td>
<td>159</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0155-80P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0157-00P</td>
<td>--</td>
<td>116</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0157-10P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0175-20P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1081</td>
</tr>
<tr>
<td>T0190-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0190-10P</td>
<td>--</td>
<td>161</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0190-70P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0190-80P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0195-20P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>786</td>
</tr>
<tr>
<td>T0220-00P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-00P</td>
<td>25</td>
<td>169</td>
<td>337</td>
<td>892</td>
</tr>
<tr>
<td>T0231-10P</td>
<td>--</td>
<td>337</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-20P</td>
<td>--</td>
<td>351</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-30P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-50P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-70P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-80P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T0231-80P</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Catalog Parts are designated by AL value.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Standard Toroid Sizes</th>
<th>wt/k kgs</th>
<th>L<sub>m</sub> mm</th>
<th>A<sub>e</sub> mm<sup>2</sup></th>
<th>V<sub>e</sub> mm<sup>3</sup></th>
<th>C<sub>e</sub> mm<sup>-1</sup></th>
<th>MLT mm/Turn</th>
<th>A<sub>l</sub> (nH per turn squared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*T0375-00H</td>
<td>9.53 4.75 6.35 0.375 0.187 0.250 1.66 20.716 14.579 302.005 1.42 17.48 4422 -- 8844</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0375-10H</td>
<td>9.53 4.75 3.18 0.375 0.187 0.125 0.83 20.716 7.301 151.244 2.84 11.14 2214 -- 4429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0375-30H</td>
<td>9.53 4.75 4.78 0.375 0.187 0.188 1.25 20.716 10.963 227.108 1.89 14.33 3325 -- 6650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0394-00H</td>
<td>10.00 5.00 5.00 0.394 0.197 0.197 1.44 21.788 12.018 327.057 1.89 14.33 3325 -- 6650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0394-20H</td>
<td>10.00 5.00 4.00 0.394 0.197 0.157 1.15 21.788 9.602 209.209 2.84 11.14 2214 -- 4429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0395-10H</td>
<td>10.00 6.00 4.00 0.394 0.236 0.157 0.99 24.007 7.886 189.327 3.04 12.03 3325 -- 6650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0472-00H</td>
<td>12.00 6.00 4.00 0.472 0.236 0.157 1.65 26.141 11.515 301.024 2.27 13.99 2768 3875 5536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0500-00H</td>
<td>12.70 7.92 3.18 0.500 0.312 0.125 1.20 31.216 7.449 232.536 4.19 11.13 2968 4198 5936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0500-20H</td>
<td>12.70 7.92 4.00 0.500 0.312 0.157 1.15 21.788 9.602 209.209 2.84 11.14 2214 -- 4429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0520-00H</td>
<td>13.21 7.37 3.96 0.520 0.290 0.156 1.82 30.551 11.251 343.728 2.72 14.94 2396 3359 4798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0551-00H</td>
<td>14.00 9.00 5.00 0.551 0.354 0.197 2.20 34.977 12.293 429.970 2.85 15.00 -- 3092 4416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0520-20H</td>
<td>13.21 7.37 6.05 0.520 0.290 0.238 2.78 30.551 17.165 524.406 1.78 17.01 -- -- 4942</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0625-00H</td>
<td>15.88 8.89 4.70 0.625 0.350 0.185 3.11 36.804 15.959 587.354 2.31 16.38 2725 -- 5449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0632-00H</td>
<td>16.00 9.00 5.00 0.630 0.354 0.197 3.35 37.167 17.062 634.133 2.18 17.01 -- -- 5763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0634-00H</td>
<td>16.00 12.00 8.00 0.630 0.472 0.315 3.43 43.363 15.944 691.305 2.72 20.00 -- 3222 4603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0711-00H</td>
<td>18.00 10.00 7.00 0.709 0.394 0.276 6.01 41.574 27.252 1132.994 1.53 22.00 4115 -- 8229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0787-10H</td>
<td>20.00 10.00 10.00 0.787 0.394 0.394 11.49 43.560 48.003 2091.035 0.91 30.00 6931 -- 13863</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0866-00H</td>
<td>22.00 14.00 6.50 0.866 0.551 0.256 7.17 54.654 25.574 1397.741 2.14 21.01 2940 -- 5880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0866-10H</td>
<td>22.00 14.00 8.00 0.866 0.551 0.315 8.83 54.654 31.648 1719.877 1.74 24.00 -- 5060 7240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0870-00H</td>
<td>22.10 13.72 6.35 0.870 0.540 0.250 7.30 54.179 26.114 1414.839 2.07 21.08 3020 -- 6040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0870-10H</td>
<td>22.10 13.72 12.70 0.870 0.540 0.500 14.60 54.179 52.228 2829.677 1.04 33.78 6040 -- 12080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T0984-00H</td>
<td>25.00 15.00 13.00 0.984 0.591 0.512 19.93 60.184 63.628 3829.426 0.95 36.01 -- -- 13290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T1000-00H</td>
<td>25.40 15.50 10.00 1.000 0.610 0.394 15.51 61.693 48.571 2996.469 1.27 29.90 4830 -- 9660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T1142-00H</td>
<td>29.00 19.00 7.49 1.142 0.748 0.295 13.78 73.204 36.939 2704.070 1.98 24.99 3170 4750 6340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T1142-10H</td>
<td>29.00 19.00 13.80 1.142 0.748 0.543 25.37 73.204 67.993 4977.322 1.08 37.60 -- 8169 11671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T1220-00H</td>
<td>31.00 19.00 13.00 1.220 0.748 0.512 29.88 75.973 76.420 5767.633 0.99 38.00 -- -- 12728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T1417-00H</td>
<td>36.00 23.00 10.00 1.417 0.906 0.394 29.38 84.664 63.874 5727.244 1.40 33.00 4543 -- 9085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*T1417-10H</td>
<td>36.00 23.00 15.00 1.417 0.906 0.591 44.07 84.664 95.812 8590.866 0.94 43.00 6743 -- 13440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BALUN CORES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Fig #</th>
<th>Length A (mm)</th>
<th>Width B (mm)</th>
<th>Height C (mm)</th>
<th>ID D (mm)</th>
<th>E (mm)</th>
<th>wt/k kgs</th>
<th>Electrical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>N0136-00P</td>
<td>1</td>
<td>3.45</td>
<td>2.01</td>
<td>2.36</td>
<td>0.86</td>
<td>1.45</td>
<td>0.06</td>
<td>0.050</td>
</tr>
<tr>
<td>N0136-10P</td>
<td>1</td>
<td>3.45</td>
<td>2.01</td>
<td>1.50</td>
<td>0.86</td>
<td>1.45</td>
<td>0.04</td>
<td>0.029</td>
</tr>
<tr>
<td>N0136-30P</td>
<td>1</td>
<td>3.45</td>
<td>2.01</td>
<td>1.65</td>
<td>0.86</td>
<td>1.45</td>
<td>0.06</td>
<td>--</td>
</tr>
<tr>
<td>N0138-00P</td>
<td>1</td>
<td>3.45</td>
<td>2.01</td>
<td>0.68</td>
<td>0.86</td>
<td>1.45</td>
<td>0.02</td>
<td>0.014</td>
</tr>
<tr>
<td>N0252-000</td>
<td>2</td>
<td>6.35</td>
<td>--</td>
<td>6.35</td>
<td>1.19</td>
<td>3.05</td>
<td>0.88</td>
<td>0.383</td>
</tr>
<tr>
<td>N0277-00P</td>
<td>1</td>
<td>7.04</td>
<td>4.06</td>
<td>6.20</td>
<td>1.80</td>
<td>2.90</td>
<td>0.61</td>
<td>0.229</td>
</tr>
<tr>
<td>N0372-00P</td>
<td>3</td>
<td>9.40</td>
<td>5.35</td>
<td>8.00</td>
<td>2.59</td>
<td>5.24</td>
<td>1.46</td>
<td>--</td>
</tr>
</tbody>
</table>

Figure #1

![Figure #1 Image]

Figure #2

![Figure #2 Image]

Figure #3

![Figure #3 Image]
FERRITE PROPERTY MEASUREMENT

INITIAL PERMEABILITY, LOSSES & INDUCTANCE FACTOR

Three properties can be measured, using an inductance meter to measure an equivalent series inductance and resistance. From these values, and a knowledge of the inductor sample, these parameters may be derived. These are:

Inductance Factor, A_L, given by

$$A_L = \frac{L_{\text{measured}}}{\pi}$$

where L is the inductance in nH, and n is the number of turns.

Initial Permeability (the real part only), μ_i, given by

$$\mu_i = \frac{L}{L_o}$$

where L is the measured inductance, and L_o is the air core inductance.

Losses, described by $\tan \delta/\mu_i$, given by

$$\tan \delta/\mu_i = \frac{L_o R_s}{\omega L^2}$$

where μ_i is the initial permeability, $\tan \delta/\mu_i$ is the lossy component of the total reactance, ω is $2\pi f$, and other terms as defined above.

Equipment: Precision LCR meter.

Test Conditions: Flux Density < 10 Gauss

Frequency: as specified.

The core is stabilized at room temperature (22°C) and wound with the correct number of turns. Since most LCR meters have a resistor, usually 100 Ω, in series between the oscillator and the unknown to be measured, the number of turns should be chosen such that the reactance of the core is at least 10 Ω. This condition ensures that a minimum of 10% of the test signal is applied to the core.

With the frequency set and voltage adjusted for test conditions, the LCR meter will measure R_s and L_s. Caution: When measuring very small value reactances, be sure to test the accuracy of the measurement instrument.

CHANGES IN INDUCTANCE VERSUS TEMPERATURE & CURIE TEMPERATURE

These two tests may be performed using an inductance meter and a temperature controlled oven. The inductance meter will measure R_s and L_s as described above.

Equipment: Precision LCR meter
Temperature Controlled Chamber for DUT

Test Conditions: Flux Density <10 Gauss
Temperature as specified

Frequency: 10 to 100 kHz.

The cores to be tested are placed in the temperature chamber and subjected to two stabilizing temperature cycles, with approximately two hours at each temperature.

The first inductance measurement, L_1, is made at the lowest temperature, θ_1, after a thirty minute soak at that temperature. This procedure is repeated up to the highest specified temperature, θ_2. A measurement made in the 20°C to 25°C range is considered the reference inductance, L_{ref}, at the reference temperature, θ_{ref}.

After measuring the highest temperature, a final measurement should be made again at the reference temperature. Both measurements of the reference inductance should be the same within the bridge accuracy. If these two readings are significantly dissimilar, more temperature stabilizing cycles may be needed to eliminate irreversible inductance changes in the samples.

From the inductance reading at various temperatures, the temperature coefficient of inductance may be calculated from

$$T.C. = \frac{L(\theta_2) - L_{\text{ref}}}{L_{\text{ref}} (\theta_2 - \theta_{\text{ref}})} = \frac{L(\theta_2) - L(\theta_1)}{L(\theta_2) - L(\theta_1)}$$

where all terms are as defined above.

For Curie Temperature measurement, temperature is slowly increased while inductance is monitored. The temperature at which core inductance decreases to 10% of the room temperature value is the Curie Temperature.
FERRITE PROPERTY MEASUREMENT

FLUX DENSITY, RESIDUAL FLUX DENSITY, COERCIVE FORCE, & AMPLITUDE PERMEABILITY

There are four intrinsic material parameters that can be determined from the B-H loop measurement. The core under test is used as a transformer and the relationship between winding current (H) and secondary winding integrated voltage (B) is measured. This relationship is displayed using the “X versus Y” display mode on an oscilloscope. Magnetic terms are readily expressed in electrical terms to calibrate the display in units of Oersteds (Oe) versus Gauss (G). Once this calibration is achieved, salient points on the B-H curve may be easily obtained.

Equipment: Function Generator
Amplifier
RC Network
Dual Channel Oscilloscope

The test circuit is as shown at the right. Resistor R_1 is kept small in comparison with the inductive reactance of the wound sample. Cores must be properly installed and wound with primary and secondary winding. Field strength, H, is set by varying the current which is read as voltage across resistor R_1.

$$H_{[\text{Oe}]} = \frac{0.4\pi nI}{I_{[\text{cm}]}} = \frac{0.4\pi nV_p}{I_{[\text{cm}]R_1}}$$

Flux density in the core is determined by integrating the secondary voltage using the RC circuit.

$$B_{[\text{G}]} = \frac{R_2CV_p10^8}{\pi n^2 A_{\text{p}ou}}$$

where R_2 is the integrating resistance, and C is the integrating capacitor.

From the displayed hysteresis loop saturation flux density, B_s, values for coercive force, H_c, and residual flux density, B_r, may be determined once the oscilloscope is calibrated for field strength H and Flux Density.

Finally, amplitude permeability, μ_a, is given by

$$\mu_a = \frac{B}{H}$$

where B represents peak flux density between 10 Gauss and saturation, an H is the corresponding field strength.
PULSE CHARACTERISTICS
An open collector drive circuit is used to drive a pulse through a transformer with the secondary open circuited. The effect of the transformer on the pulse is observed by monitoring waveforms.

Equipment:
- Pulse Generator
- DC Power Supply
- Pulse Drive Circuit—appropriate for application
- Dual Channel Oscilloscope
- Current Probe

Test Conditions: Pulse Amplitude, Pulse Width, and Pulse Repetition Rate as specified.

Temperature: 23°C ± 3°C.

The test toroid to be measured is wound with a sufficient number of turns to produce at least 100 μH of inductance. The core is excited by applying square voltage pulses. The test circuit is shown below.

Pulse inductance, L_p, pulse Inductance Factor, A_{lp}, and the voltage time product, $E \cdot T$, are measured in accordance with section 16.7 of IEC367-1.

Pulse inductance is specified as greater than 90% of sine wave initial inductance.

POWER LOSS
Power loss is readily measured using a Volt-Amp-Watt (VAW) meter.

Equipment:
- Signal Generator
- Power Amplifier
- Clark Hess 256 VAW Meter
- Temperature Chamber

The equipment is connected as shown below.

Frequency is set and voltage is adjusted to the desired flux density level, given by the relation

$$E_{\text{rms}} = 4.44fBp_{bc} A_{e} \cdot 10^{-8}$$

Power losses are indicated by the VAW meter in watts. Measurements are made as rapidly as possible to avoid temperature rise in the samples.

Material power loss density is determined by dividing the measured power loss by the effective volume of the ferrite core.

A VAW meter may also be used to measure magnetizing current, I_m. This value can be used to calculate the winding loss ($I_m^2 R_w$), a part of the total measured power loss.

Accuracy at higher frequencies is highly dependent on phase shift between the voltage and current.
MEASUREMENT OF IMPEDANCE OF FERRITE COMPONENTS

The most common property referenced for soft magnetic materials is permeability. Impedance is a complex property comprised of imaginary (reactive) and real (resistive) components. At the lower end of the RF scale, impedance can be calculated from inductance as $Z \sim 2\pi fL = X$, and is dominated by the reactive component of permeability.

As frequency increases, impedance is driven by the resistive component and can be calculated as $Z = R^2 + (j\omega L)^2$, where R represents the resistive component and $j\omega L$ represents the reactive component. At higher frequencies permeability will approach zero and impedance will reach a maximum value comprised of a purely resistive component. Impedance, like permeability, varies with temperature, frequency, signal current, DC bias, and the presence of any extraneous fields.

The useful impedance obtained from a ferrite component depends on its application, number of turns, and winding method. See below for an illustration of the effect of differential versus common mode winding techniques on the net impedance of a core.

Impedance measurements are made on an RF impedance analyzer. Measurements for this catalog were made on a Hewlett-Packard E4991A Network/Spectrum Analyzer with a E4991A Impedance Test Kit. All impedance curves represent gross measurements with number of turns and DC Bias current applied as shown (unless noted other-wise). In all cases the length of the conductive path between the part under test and the test fixture is kept to a minimum and in a fixed position to minimize parasitic capacitance.

All impedance measurements with DC Bias utilize the internal circuitry of the impedance analyzer. Measurements are also possible with an external source of DC current using an RF choke and a blocking capacitor to isolate the bias circuit from the RF circuit.

28T0155-200, 10 AMP-TURNS

These curves show the effect of ten amp-turns of DC bias on the same core wound two different ways. In the differential mode, wherein there is a single winding carrying direct current, the core is pushed far into saturation (ten amp-turns on a T0155-200 corresponds to 13.7 Oersteds). In the common mode, wherein the direct current returns through a coil of the opposite winding direction and an equal number of turns, the only deviation from zero-bias arises from leakage inductance, which is inherently low in toroids.
The following glossary of terms is adapted from the Magnetic Materials Producers Association publication SFG-92 and other sources.

Air Core Inductance (L₀ [Henry]): The inductance that would be measured if the core had unity permeability and the flux distribution remained unaltered.

Circular Mils (c.m. [mils²]): The cross sectional area of a circular conductor calculated as a square conductor, i.e., area in c.m. is D², where D is the diameter of the wire. See also “Square Mils.”

Coercive Force (H_c [Oe; Amp/m]): The magnetization field strength required to bring the magnetic flux density of a magnetized material to zero. See “Field Strength.”

Common Mode Current: The component of signal current that induces electric and magnetic fields that do not tend to cancel one another. For example, in a circuit with one outgoing signal conductor and one return (“ground”) conductor, the common mode current is the component of the total signal current that flows in the same direction on both conductors. Common mode current is the primary source of EMI in many electronic systems.

Common Mode Type I: On a single phase Wye bus, the conduction mode in which phase, neutral, and ground currents are in phase. The return current path is through the ground plane and the case.

Common Mode Type II: On a single phase Wye bus, the conduction mode in which phase and neutral currents are in phase, but the green wire currents are the return path, therefore 180° out of phase.

Common Mode Voltage: The voltage that drives directed common mode (noise) currents.

Core Constant (C₁ [cm⁻¹; mm⁻¹]): The summation of the magnetic path length of each section of the circuit divided by the corresponding area of the same section. See section entitled “Magnetic Design Formulas.” C₁ is a frequently useful ratio in the analysis and prediction of core performance.

Core Constant (C₂ [cm⁻³; mm⁻³]): The summation of the magnetic path length of each section of the magnetic circuit divided by the square of the corresponding magnetic area of the same section. See section entitled “Magnetic Design Formulas.”

Curie Temperature (T_c [°C]): The transition temperature above which a ferrite loses its ferromagnetic properties. Usually defined as the temperature at which μᵢ falls to 10% of its room temperature value.

Dielectric Withstanding Voltage (DWV [V]): DWV is the voltage level at which the dielectric breaks down, allowing conduction between isolated conductors or between a conductor and the core. Isolation, or Hipot is the ability of a transformer to withstand a specific breakdown voltage between the primary and secondary windings.

Differential Mode: A current conduction mode in which currents, relative to two conductors, are flowing 180° out of phase, with equal magnitude within the conductors.

Differential Mode Current: The intended signal currents that are equal and oppositely directed on pairs of signal and return (“ground”) conductors.

Differential Mode Voltage: The voltage that drives equal and oppositely directed currents to achieve an intended circuit function; the source of differential mode currents.

Disaccommodation (D): The proportional change of permeability after a disturbance of a magnetic material, measured at constant temperature, over a given time interval.

Disaccommodation Factor (DF): The disaccommodation factor is the disaccommodation after magnetic conditioning divided by the permeability of the first measurement times log₁₀ of the ratio of time interval.

Effective Area (Aₑ [cm²; mm²]): For a magnetic core of a given geometry, the magnetic cross-sectional area that a hypothetical toroidal core of the same material properties would possess to be the magnetic equivalent to the given core.

Effective Length (lₑ [cm; mm]): For a magnetic core of a given geometry, the magnetic length that a hypothetical toroidal core of the same material properties would possess to be the magnetic equivalent to the given core.

Effective Volume (Vₑ [cm³; mm³]): For a magnetic core of a given geometry, the magnetic volume that a hypothetical toroidal core of the same material properties would possess to be the magnetic equivalent to the given core.

Field Strength (H [Oe; Amp/m]): The parameter characterizing the amplitude of ac or dc field strength. Field strength is determined by the magnitude of current and geometry of the windings.

Flux Density (B [Gauss; Tesla]): The corresponding parameter for the induced magnetic field in an area perpendicular to the flux path. Flux density is determined by the field strength and permeability of the medium in which it is measured.
Impedance Z [Ohm]: The impedance of a ferrite may be expressed in terms of its complex permeability:

\[Z = j \omega L + R = j \omega L \left(\mu' - j \mu'' \right) \text{ (ohm)} \]

Incremental Permeability [\(\mu_\Delta \)]: The permeability of a magnetic material about a specified operating point and applied \(H \) (especially under DC bias). The incremental permeability is expressed as the slope of the B-H characteristic about the given operating point.

\[\mu_\Delta = \frac{\Delta B}{\Delta H} \]

Inductance Factor (AL): A constant for a given geometrical shape that when multiplied by the square of the number of turns, gives the inductance in nano Henrys. Initial permeability (flux density of less than 10 Gauss) is assumed in the inductance factor.

Insulation Resistance [Ohm]: The insulation properties of the insulating material as measured in Ohms.

Leakage Flux: Leakage flux is the small fraction of the total magnetic flux in a transformer or common mode choke that does not contribute to the magnetic coupling of the windings of the device. In a transformer with a single set of primary and secondary windings, the leakage flux is that portion of flux that is produced by the primary that does not link the secondary. The presence of leakage flux in a transformer or common mode choke is modeled as a small “leakage” inductance in series with each winding. In a multi-winding choke or transformer, leakage inductance is the inductance measured at one winding with all other windings short circuited.

Leakage Inductance (\(L_\lambda \) [Henry]): That component of inductance that results from non-ideal coupling of flux to a core and/or other windings. As applied to the primary side of a transformer, the quotient of flux not coupled to the secondary winding and the current in the primary winding. As applied to an inductor, the quotient of flux outside the core and the current through the winding. In a multi-winding choke or transformer, leakage inductance is the inductance measured at one winding with all other windings short circuited.

Loss Factor (\(\tan \delta / \mu \)): The phase displacement between the fundamental components of the flux density and the field strength divided by the initial permeability. This term is essentially normalized loss. Note that \(1 / \tan \delta \) equals Q. This term is most useful as an indicator of the useful high Q bandwidth of a material. Above a specific frequency, depending on the material, loss factor normally undergoes a rapid increase due to magnetic resonance. Note that a high Q is not desirable in all applications, especially EMI or filtering.

Loss Tangent: The measure of the loss of a magnetic material at high operating frequencies due to the oscillation of microscopic magnetic regions within the material. The loss tangent is expressed as the ratio of the imaginary permeability component \(\mu'' \) to the real permeability \(\mu' \) of the material.

Magnetic Constant (\(\mu_\mu \) [Henry/m]): The permeability of free space. The constant \(\mu_\mu \) has a value of \(4\pi \times 10^{-7} \).

Magnetic Field Intensity or Magnetizing Force (H): The mmf per unit length. \(H \) can be considered to be a measure of the strength or effort that the magnetomotive force applies to a magnetic circuit to establish a magnetic field. \(H \) may be expressed as \(H = Nl/I \), where \(\theta = \) the mean length of the magnetic circuit in meters.

Magnetic Hysteresis: In a magnetic material, the irreversible variation of the flux density or magnetization which is associated with the change of magnetic field strength and is independent of the rate of change. Hysteresis results in the square or “open” characteristic of the B-H loop. Because it is irreversible, hysteresis results in lost energy. The amount of energy lost is related to the area within the B-H loop traversed.

Magnetically Soft Material: A magnetic material with a low coercivity.

Magnetomotive Force (MMF [Amp]): The magnetic field which induces a magnetic flux in a magnetic circuit. The total magnetomotive force is the product of turns and current. Also, the product of Magnetic Field and coil length.

Mean Length Turn (MLT [cm; mm]): The average length of a single turn around the toroid. Values in this catalog are given for single layer coils. In multi-layer coils, the length of each successive layer is longer resulting in a longer average turn length.

Parasitic Capacitance (\(C_p \) [F]): Unintentional capacitance resulting from close physical proximity of two conductors. The copper comprising the wire is separated by its insulation from the core. The capacitance is proportional to area (wire diameter) and inversely proportional to separation.

Permeability (\(\mu \)): The extent to or ease with which a material can be magnetized, often expressed as the parameter relating the magnetic flux density \(B \) induced by an applied magnetic field intensity \(H \), as \(B = \mu H \). The “absolute” permeability of a given material is expressed as the product of its relative permeability \(\mu_r \) (a dimensionless constant) and the free space constant \(\mu_\mu \).
TERMINOLOGY

Permeability, amplitude (μ_A): The quotient of the peak value of flux density and peak value of applied field strength at a stated amplitude of either, with no static field present.

Permeability, incremental (μ_{Δ}): This is the permeability derived from the incremental difference of B and H ($\Delta B/\Delta H$), as given by a small ac signal with a static field, or bias, present. Also, minor loop permeability.

Permeability, effective (μ_e): For a magnetic circuit constructed with an air gap(s), the permeability of a hypothetical homogeneous material which would provide the same reluctance.

Permeability, Free Space (μ_0): The permeability of free space, a constant.

Permeability, initial (μ_i): This is the permeability of an initially de-gaussed core driven with a small signal ($2<B<10$ Gauss typical) such that the permeability of a minor loop centered on the origin is measured. The drive level is specified as < 10 Gauss, and is such that the minor loop is “inside” the major loop. Note that the (amplitude) permeability initially increases with increasing field strength.

Permeability, Pulse (μ_{P}): Under stated conditions, permeability obtained from the ratio of the rate of change in flux density to the rate of change in applied field strength of the pulse field.

Power Loss Density (P $[\text{mW/cm}^3; \text{kw/m}^3]$): The power absorbed by a body of ferromagnetic material and dissipated as heat when the body is subjected to an alternating field, which results in a measurable temperature rise. The total loss is divided by the volume of the body.

Quality Factor (Q): The ratio of energy stored to energy lost (reactance to resistance). For a series LR circuit, $Q = \omega L/R$. For a parallel LR circuit, $Q = R/\omega L$.

Remanence (B_r [Gauss; Tesla]): The flux density remaining in a magnetic material when the applied field strength is reduced to zero.

Resistance: A measure of the degree to which an object opposes the passage of an electrical current resistance defined as:

$$R = \frac{V}{I}$$

where $V =$ voltage, $I =$ current.

At Oe bins levels resistance is also

$$R = \frac{\Delta r}{A}$$

where $\Delta =$ length of conductor, $r =$ resistivity, $A =$ cross section area.

Resistivity (ρ): The intrinsic property measured in ohm-cm that quantifies a material’s opposition to free electron motion. Resistivity is the reciprocal property to conductivity. The resistance of a homogeneous material of uniform cross section A and length l can be found by:

$$R = \frac{\rho l}{A}$$

Rise Time (τ, [sec]): Rise time of a square pulse is defined as the shortest time required for the voltage level to change from a “low” state to a “high” state. Time is customarily measured between voltage levels 10% and 90% of the “high” amplitude.

Saturation: The point at which the flux density B in a magnetic material does not increase with further applications of greater magnetization force H. At saturation, the slope of a material’s B-H characteristic curve becomes extremely small, with the instantaneous permeability approaching that of free space (relative permeability = 1.0).

Saturation Flux Density (B_s [Gauss; Tesla]): The maximum intrinsic induction possible in a material. This is the flux level at which additional H-field produces no additional B-field.

Single-Layer Winding: A winding for toroidal cores which will result in the full utilization of the inside circumference of the core without overlapping turns. Both the wire gauge and the thickness of the insulation will effect the number of turns which will fit on a single-layer winding.

Square Mils (mils2): The cross sectional area of a circular conductor calculated as a circle, ie, area is πr^2, where r is in mils. See also “Circular Mils.”

Temperature Coefficient (T.C.): The normalized change of the quantity considered (inductance, for instance), divided by the difference in temperature producing it.

Turns Ratio: The ratio of the number of turns on the primary to the number of turns on the secondary.

Volt Second Product (ET $[\text{Vs}]$): The ET product is a parameter used to measure the transformer’s ability to maintain and support a pulse signal without saturating the core. It is determined as the product of the voltage applied at the primary and the time required for the magnetizing current to reach 1.5 times its linear value. Values for ET are dependent on the core geometry, core material, and the number of turns on the winding.

Volume Resistivity (ρ [Ohm-cm]): The resistance measured by means of direct voltage of a body of ferromagnetic material having a constant cross-sectional area.
America: +1 800 634.2673 Option 1
Europe: +420 488.575277
Asia: +86 757.2563.8860

www.lairdtech.com

NOTICE

Laird Technologies’ products or subcomponents are not specifically designed or tested by Laird Technologies for use in any medical applications, surgical applications, medical device manufacturing, or any similar procedure or process requiring approval, testing, or certification by the United States food and drug administration or other similar Governmental entity. Applications with unusual environmental requirements such as military, medical, life-support or Life-sustaining equipment are specifically not recommended without additional testing for such application.

SIP-CAT-TOROID-BALUN-CORES 0113

Any information furnished by Laird Technologies, Inc. and its agents is believed to be accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird Technologies materials rests with the end user. Laird Technologies makes no warranties as to the fitness, merchantability, suitability or non-infringement of any Laird Technologies materials or products for any specific or general uses. Laird Technologies shall not be liable for incidental or consequential damages of any kind. All Laird Technologies products are sold pursuant to the Laird Technologies’ Terms and Conditions of sale in effect from time to time, a copy of which will be furnished upon request. © Copyright 2013 Laird Technologies, Inc. All Rights Reserved. Laird, Laird Technologies, the Laird Technologies logo, and other marks are trade marks or registered trade marks of Laird Technologies, Inc. or an affiliate company thereof. Other product or service names may be the property of third parties. Nothing herein provides a license under any Laird Technologies or any third party intellectual property rights. Version A01.